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Model Order Reduction (MOR) methods are an active research field in the numerical analysis domain. They are applied to many
different areas in physics, especially in mechanics because they allow to dramatically reduce the computational time. MOR is quite
recent in electromagnetics and needs still to be investigated. The Proper Orthogonal Decomposition (POD) is the most famous one
and has already shown very promising results. However, the POD approach minimizes the error in the L2 sense on the whole domain
and cannot be very accurate to calculate quantities of interest, like flux associated with a probe in region where the field is low. In
this communication, we present the Balanced Proper Orthogonal Decomposition (BPOD) which extends the POD by taking account
of probes in its model. The BPOD and POD approaches will be compared on a 3D linear magnetoquasistatic field problem.

Index Terms—Balanced Proper Orthogonal Decompoition, Balanced Truncation, Model Order Reduction, Proper Orthogonal
Decomposition

I. INTRODUCTION

APPLYING the Finite Element Method (FEM) coupled
with a time-stepping scheme is increasingly used to

model electromagnetic devices. This approach enables to ob-
tain very accurate results but requires to solve large scale
systems, leading to a significant computational cost. Many
model order reduction (MOR) methods have been developed
over the past few years in order to overcome this problem. Most
of them consist in looking for the solution in a reduced basis
which highly reduces the size of the full problem. Therefore,
the key of MOR methods is to build the most suitable reduced
basis for a given problem. The Proper Orthogonal Decomposi-
tion (POD) method is the most popular MOR approach. POD
is very efficient in reducing computation time of linear and
nonlinear problems [1]. However, the POD method consists in
minimizing the error on the whole domain. Thus, it leads to a
lack of accuracy when calculating local quantities of interest,
such as magnetic flux in probes. In this context, the Balanced
Proper Orthogonal Decomposition (BPOD) can be applied.
This approach which has been developed in mechanics and
fluid mechanics, but not yet in electromagnetics, enables to
build a reduced basis according to the quantity of interest (the
probe signal), increasing the accuracy of this quantity [2].

In this communication, we propose to develop and to
compare the BPOD and POD approaches in the case of a
magnetoquasistatic problem when the quantity of interest is
a probe signal. First, the numerical model obtained from
the modified vector potential formulation is briefly presented.
Then, the BPOD and POD methods are developed. Finally, an
academic example is studied with both methods, and compared
in terms of accuracy with the full Finite Element Model.

II. MODEL ORDER REDUCTION WITH BPOD AND POD
Let us consider a magnetoquasistatic problem in a domain

D. A conducting domain Dc is included in D. For sake of

clarity, we assume that the domain D contains two stranded
inductors, even though the following approach remains valid
with more inductors. The first one is supplied by a current
i(t) and the second one is not supplied but is used as a
flux probe. The flux, the quantity of interest, is denoted Φ(t).
This problem can be solved with the Finite Element Method
by using the modified magnetic vector potential formulation.
Thus, we obtain a system of algebro-differential equations:

N
dX(t)

dt
+ MX(t) = F src i(t) (1)

Φ(t) = F t
prbX(t) (2)

with X(t) the vector solution of size n, M and N square ma-
trices depending on the magnetic permeability and the electric
conductivity respectively, F src and F prb vectors accounting
for the source and the probe inductors.

A. Balanced Proper Orthogonal Decomposition
The BPOD approach derives from Balanced Truncation in-

troduced by Moore [3] which consists in reducing a numerical
model by considering the controllability and the observability
of the system. In order to obtain an approximation of the
controllability Gcont and the observability Gobs Grammians, the
snapshots method is used [4] [5].

1) Snapshots method
To compute an approximation of Gcont and Gobs, the Fourier

transform of the problem (1) is used and the snapshot method
[6] is applied. First, the primal system (1) is solved in the
frequency domain for m different frequencies:

Xk
src = (jωkN + M)

−1
F src (3)

Let us define the source snapshots matrix Xsrc ∈ Rn×2m by
concatenating the real and imaginary part of the m column-
vectors Xk

src, k = 1 . . .m. The controllability Grammian is
then approximated by Gcont ≈Xsrc Xt

src.



The observability Grammian Gobs ∈ Rn×n is approximated
by applying the same method to the dual system of (1–2):

N t dX(t)

dt
+ M tX(t) = F prb i(t) (4)

Φdual(t) = F t
srcX(t) (5)

Equation (4) is also solved in the frequency domain:

Xk
prb =

(
jωkN

t + M t
)−1

F prb (6)

Then, the probe snapshots matrix Xprb ∈ Rn×2m is defined
by concatenating the real and imaginary part of Xk

prb, k =

1 . . .m, and Gobs ≈Xprb Xt
prb.

2) Reduced basis
Performing a Singular Value Decomposition (SVD) on the

low rank matrix (Xt
prb Xsrc) ∈ R2m×2m allows to generate

a reduced basis. Therefore, Xt
prb Xsrc = UΣV t with U and

V unitary matrices in R2m×2m, and Σ a diagonal matrix in
R2m×2m. Finally, balanced controllable and observable modes,
T ∈ Rn×2m and S ∈ R2m×n, are defined by

T = XsrcV Σ−1/2 and S = Σ−1/2U tXt
prb (7)

3) Reduced model with BPOD
Using a Petrov-Galerkin procedure on the system (1–2) leads

to the following reduced model of size 2m:

N r
dXr(t)

dt
+ M rXr(t) = F src,r i(t) (8)

Φ(t) = F t
prb,r Xr(t) (9)

where N r = SNT , M r = SMT are 2m × 2m matrices.
F src,r = SF src, F prb,r = T tF prb and Xr are vectors of
size 2m.

B. Proper Orthogonal Decomposition

The previous framework allows to generate a reduced system
through the classical POD technique quite easily. Indeed, the
POD approach does not consider the probe, and neither the dual
system (4–5). Therefore, performing a SVD on (Xt

src Xsrc)
such that (Xt

src Xsrc) = UΣV t allows to build the reduced
problem (8–9) with S = T t.

III. APPLICATION

A 3D linear magnetodynamic problem composed of an
aluminium conducting plate, a probe inductor and a source
inductor supplied by a square wave current with a frequency
f0 = 1kHz is studied. The mesh is made of 12593 nodes and
68835 tetrahedrons. The backward Euler method is applied on
(1) in order to solve the problem on six periods with a 25µs
time step. Reduced basis obtained with POD and BPOD are
computed in the frequency domain at the five training angular
velocities: ωk = 2kπf0, k = 1 . . . 5. The solutions of (8–9) are
computed in the time domain using BPOD and POD methods,
and then compared to a full Finite Element model. Figure 2
presents the relative error E(Φ) =

‖Φref (t)−Φred(t)‖
‖Φref (t)‖ on the

magnetic flux associated with the probe inductor obtained from
both MOR methods, versus the size of the reduced basis. Figure
3 shows the evolution of the magnetic flux computed in the
probe by the BPOD and the POD models, for a reduced basis

of size 8. With this size of reduced basis, the speedup factors
are 36 and 21 for POD and BPOD respectively. Speedup is
calculated by taking account of the snapshots computational
cost. It appears that the POD is the fastest method whereas the
BPOD model offers a good compromise between modeling the
quantity of interest with accuracy and a significant speedup.
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Fig. 1. 3D mesh of the problem
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Fig. 2. Relative error of the magnetic flux associated with the probe versus
the size of the reduced basis (log scale)
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Fig. 3. Magnetic flux associated with the probe inductor
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